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ABSTRACT 
Phase change material (PCM) composites for latent thermal energy storage were made by mixing three different 

kinds of PCM (erythritol (Er), stearic acid (SA), and paraffin (Pa)) loaded with expanded graphite (EG) in liquid 

PCM with a mass fraction of 5, 10, and 20 wt%. The effect of EG on thermal behaviors of the PCM composites was 

evaluated. As a result, the thermal conductivity of the PCM composites increased with increasing the EG content. 

Among the three types of the PCM composites, EG/Er composites were observed to have relative enhancement up 

to 84.02% at 20 wt% EG content. However, the latent heat was somewhat decreased from 251.08 to 214.58 J/g 

owing to the presence of EG which caused the decrement of super cooling effect. Thermal cycling and thermal 

gravimetric analyses showed that the PCM composites had good thermal reliability and proper thermal stability. 

Therefore, the prepared PCM composites were appropriate for thermal energy storage applications because of their 

acceptable thermal conductivity, good thermal reliability, fast response speed, and proper thermal stability. 
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     INTRODUCTION 
New and renewable energy sources are being investigated all over the world. The development of energy storage 

devices is as important as developing new energy sources. Thermal energy storage is considered as one of the most 

important advanced technologies, and a lot of attention has been paid to utilize the essential techniques for thermal 

applications ranging from heating to cooling [1-3]. Therefore, the latent thermal energy storage has become one of 

the most attractive techniques among the different methods used in thermal energy storage.  

Phase change materials (PCM) have lately become a subject of active research for storing thermal energy and 

adjusting temperature by storing and releasing large amounts of latent heat during phase change process [4–6]. The 

applications of PCM in thermal energy storage have been well known in many fields, such as in solar energy 

storage, waste heat recovery, smart air conditioning in buildings, homothermal clothing, and so on. Therefore, 

considerable research efforts have been dedicated to improve the existing PCM and identify the new materials with 

desirable thermal properties [7-9]. 

PCM can be classified into two major categories: inorganic compounds and organic compounds. Inorganic PCM 

include salt hydrates, salts, metals and alloys, whereas organic PCM are comprised of paraffin, fatty acids, alcohols 

and glycols. Among the various kinds of PCM, erythritol, stearic acid, paraffin are taken as the most promising 

PCM because they possess desirable properties, such as high latent heat, non-toxicity, good chemical stability, easy 

availability [10-12]. However, they suffer from a low thermal conductivity, poor thermal stability, and liquid 

leakage when they undergo the solid–liquid phase change. These drawbacks reduce the rate of heat storage and 

extraction during the melting and solidification cycles and restrict their wide applications. 

To overcome the problem relating to the low thermal conductivity of PCM, a great deal of efforts have been 

attempted, which include dispersing metallic or nonmetallic particles with high thermal conductivity into PCM [13-
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15], using finned tubes with different configurations in a storage unit, and impregnating PCM into high thermal 

conductivity materials with porous structure, such as carbon materials and metal foams [16-18]. Compared with 

carbon materials, metal foams, additives or fins not only significantly increase the weight and cost of the storage 

systems, but also are incompatible with PCM for some of them. 

The most popular method to enhance the thermal conductivity of PCM are adding high conductivity fillers, such as 

powders, metal foams, fibers, nanoplatelets, etc. Among them, carbon based materials, such as carbon nanofibers, 

carbon nanotubes, graphites are highly attractive as supporting materials owing to their low density, good thermal 

conductivity, chemical stability and wide availability. On the other hand, to minimize the loss of energy storage 

capacity resulting from the supporting materials, porous materials are considered as promising supporting materials. 

It is expected that the large surface area and low density of porous materials will enhance the shape stabilization 

capability and thus minimize the loss of energy storage capacity [19-21]. 

Recently, expanded graphite (EG) has been employed to enhance the heat transfer in PCM, due to its desirable 

properties of high thermal conductivity, high stability, low price, good compatibility with organic PCM, and lower 

density and weight as compared with metal promoters [22–25]. It has been shown that EG can improve the thermal 

conductivity of the PCM without much reduction in energy storage capacity and liquid exudation during its phase 

change. Lee et al [26] prepared EG/erythritol composites with various interlayer distance composites and then 

studied the effect of the additives of various interlayer distances of EG on thermal behaviors. As results, the thermal 

conductivity and the latent heat value significantly increased with an increase of EG interlayer distances. In 

particular, EG/ erythritol composites having the largest EG interlayer distance showed thermal conductivity of 3.56 

W/mK and a latent heat value of 90 mass% of pure erythritol. In addition, Zhang and Fang [27] studied the effect of 

the EG addition on the thermal properties of the EG/Paraffin composites prepared as form-stable PCM, and they 

reported that the latent heat capacity of the PCM decreased with increase of the mass fraction of the graphite. 

In this work, three different kinds of PCM (erythritol, stearic acid, and paraffin) composites containing the EG were 

prepared by impregnation method. The effects of EG on surface and structure properties, thermal conductivity, 

latent heat, thermal cycling, and thermal stability of the PCM composites were characterized by scanning electron 

microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), thermal conductivity (TC), 

differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). 

 

MATERIALS AND METHODS 
Materials 

Erythritol (Cargill Co. with melting temperature of 118-130◦C), stearic acid (Junsei Co. 64-71◦C), and paraffin wax 

(Sigma-Aldrich Co. 53-57oC) were used as PCM and natural graphite (average diameter: 500 ㎛) was purchased 

from Sigma-Aldrich Co. 

 

Preparation of EG 

EG were prepared by a version of a previously reported method [28] ; graphite (10 g) was added into a mixture of 

sulfuric acid and nitric acid (4:1 volume rations). After 1 day reaction, the graphite obtained by filtration was 

washed with distilled water until a neutral pH was achieved, and then dried in a vacuum oven at 90◦C  for 8 h. The 

acid-treated graphite was treated at 900◦C for 90 sec in a furnace. Table 1 provided the specifications of the 

erythritol, stearic acid, paraffin, and EG. 

EG were composed of layered, but compactly fastened, and nanoplates of graphite, as shown in Fig. 1. It showed the 

worm- or accordion-like expanded structure of graphite intercalated compounds which were exfoliated up to about 

500 times in its initial volume by rapid heating.  

 

 
Fig. 1 SEM micrographs of EG 
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Table 1. Properties of erythritol, stearic acid (SA), paraffin, and expanded graphite (EG) 

 Erythritol SA Paraffin EG 

Density 

(g/cm3) 
1.28 0.85 0.9 1.3 

Thermal 

conductivity 

(W/mk) 

0.34-0.73 0.33 0.356 4-200 

Latent heat 

(J/g) 
320-354 203 142.72 327 

Melting point 

(oC) 
118-130 64-71 53-57 - 

 

 

Preparation of PCM composites 

The PCM composites were prepared by adding EG at different mass fractions into erythritol, stearic acid, and 

paraffin using the melting method [29]. The PCM was melted at over the melting temperature of each PCM, and the 

EG was then mixed into the liquid PCM. The PCM composites were prepared by stirring for 20 min at 100-200 rpm 

and sonication for 30 min of EG in liquid PCM with a mass fraction of 5, 10 and 20 wt%. Thermal conductivity 

would increase continuously with higher additive quantity of EG, but more than 20wt% EG were not added, because 

they have a very low weight density and low dispersibility. The PCM composites were cooled to the room 

temperature. Then, the PCM composites were obtained and labeled pure erythritol, EG/Er 5, EG/Er 10, EG/Er 20, 

pure stearic acid, EG/SA 5, EG/SA 10, EG/SA 20, pure paraffin, EG/Pa 5, EG/Pa 10, and EG/Pa 20. Fig. 2 showed 

the schematic diagram of manufacturing procedure of PCM composites. 

 

 
Fig. 2 EG Schematic diagram of manufacturing procedure for PCM composites. 

 

Characterization 

Scanning electron microscopy (SEM, S-4800, Hitachi) and transmission electron microscope (TEM, JEM 2100F, 

JEOL) were used to observe the surface morphology and microstructure of the PCM composites. For the TEM 

observations, the samples were dispersed in ethanol with a low power sonication-bath for a few minutes and 

deposited on a holey carbon coated copper by drying a droplet of a suspension on the grid. The XRD curves of the 

PCM composites were obtained using a PANalytical Model X’pert Powder diffractometer equipped with a rotation 

anode with CuKα radiation (λ=0.1542 nm) used to measure the interlayer spacing. 

The latent heat of the PCM composites was obtained by differential scanning calorimeter (DSC, TA-60, 

SHIMADZU Co.). For DSC measurements, the amount of about 5.5 mg for every sample was sealed in an 

aluminum pan for characterization, at a heating rate of 10◦C/min in a nitrogen atmosphere. The latent heat was 

calculated as total by numerical integration of the area under the peaks that represented the solid-solid and solid-

liquid phase transition. The thermal conductivity was measured by Thermo Con Tester M100, Metrotech Co. Ltd., 

Korea. The thermal diffusivity of the PCM composites was measured by thermal diffusivity measurement apparatus 

(LFA447, NETZSCH). The samples with 12.7 mm diameter and 2 mm thickness were placed in the sample holders. 

The front side of a plane-parallel sample was heated by a short light pulse. The weight loss and thermal stability of 
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the PCM composites were obtained by thermogravimetric analysis (TGA, TGA-50, SHIMADZU Co.) at a heating 

rate of 20◦C/min in temperature range of 30–600◦C.  

 

RESULTS AND DISCUSSION 
Morphology of PCM composites 

Fig. 3 showed SEM micrographs of the PCM composites. The EG remained in the worm-like structure after the 

erythritol was absorbed into the pores of the EG and the absorbed erythritol exhibited a uniform distribution in the 

PCM composites owing to the capillary force and the surface tension force of the porous EG. The EG with different 

mass ratios in the EG/SA composites was embedded and dispersed in the porous network of the EG. The two phases 

interfaces between the stearic acid and the EG combined compactly because of the high wetting ability of the stearic 

acid. The stearic acid exhibited a uniform distribution in the composites due to the effect of capillary and surface 

tension forces between the stearic acid and the porous network of the EG. The morphology and dispersibility of 

EG/Pa composites appear to follow the same trend. 

 

 
 

Fig. 3 SEM micrographs of (a) pure erythritol, (b) pure stearic acid, (c) pure paraffin, (d) EG/Er composites, (e) 

EG/SA composites, and (f) EG/Pa composites 

The more detailed structure of nanosheet was shown in Fig. 4. The nanosheets were dispersed in PCM matrix. After 

the PCM composites turned into solid, the well-dispersed EG nanosheets were fixed.  

 

 

Fig. 4 EG nanosheet particles lying inside the erythritol matrix; (a) pure erythritol and (b) EG/Er 20 
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Structure of PCM composites 

Fig. 5 showed the XRD curves of the PCM composites. A strong diffraction peak located at 26.5o (2θ) was observed 

in the XRD curve of the EG, attributed to the feature peak (002) of graphite. In the XRD curve of EG/Er composites, 

the same diffraction peak shifted to 26.66o and both declined and appeared wider because of the disorientation of the 

graphite sheets, as shown in Fig. 5(a). The XRD curve of EG/Er composites included the main diffraction peaks of 

pure erythritol, though the intensities of the peaks were lower than those of the corresponding peaks in the XRD 

curve of pure erythritol. 

In the EG/SA composites, the XRD peaks at 21.5o and 23.9o were caused by the stearic acid, and the XRD peak of 

the EG in the PCM composites also appeared at 26.5o, in Fig. 5(b). The peak intensities of the peaks of EG/SA 

composites were lower than those of the corresponding peaks of pure stearic acid. This result indicated that the 

crystallite size of the EG became smaller in the composites due to the restriction of crystal of the stearic acid 

[30,31]. 

Similarly, in the XRD curve of EG/Pa composites (in Fig. 5(c)), the diffraction peak of (002) of graphite shifted to 

26.44o and its intensity declined and appeared wider because of the disorientation of the graphite sheets. The XRD 

curves of the PCM composites contained all the peaks of paraffin and EG, whereas the peak intensities were 

relatively lower in comparison with those of paraffin and EG. These results suggested that the PCM composites 

were just the combination of paraffin with EG, and no new substance had been produced. It was due to the fact that 

the paraffin was hold by the capillary force and tension force of the porous EG, no liquid paraffin was observed on 

the surface of the PCM composites at the solid–liquid phase change process. 
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Fig. 5 EG nanosheet particles lying inside the erythritol matrix; (a) pure erythritol and (b) EG/Er 20 XRD curves 

of PCM composites as a function of EG content 
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Latent heat and thermal properties of PCM composites 

DSC analysis was conducted to investigate the influence of EG addition on thermal properties, such as melting 

temperature (Tm) and the latent heat capacity of the PCM composites. The heating curves of the PCM composites 

from DSC measurements were presented in Fig. 6. Table 2 listed the melting points and the latent heat capacity of 

the PCM composites. The latent heat and Tm of pure erythritol were 251.08 kJ/kg and 125.2◦C, respectively while 

the latent heat of EG/Er composites decreased to 230.99, 224.64, 190.65 kJ/kg and the Tm decreased to 126.5, 123.2, 

116.2◦C with addition of EG. Also, we could see from the heating curve in Fig. 6(c) that the paraffin had two phase 

change peaks. The first phase change peak at about 39.3◦C was lower and corresponded to the solid–solid phase 

transition of the paraffin, and the second peak was very high at around 58.9◦C, corresponding to the solid–liquid 

phase change. The latent heat of PCM and the PCM composites showed a decrease of latent heat with increasing the 

EG content which explained that the three-dimensional net structure confined heat movement [36,37]. 

 

Table 2. DSC data of pure PCM and PCM composites 

Samples 

EG 

contents 

(wt%) 

Melting 

temperatures 

(oC) 

Specific heat 

(J/g∙℃)  

Thermal 

conductivity 

(W/mK) 

Latent heat 

(J/g) 

pure erythritol - 125.2 2.01 0.745 251.08 

EG/Er 5 5 126.5 1.96 0.831 245.34 

EG/Er 10 10 123.2 1.92 1.174 240.67 

EG/Er 20 20 116.2 1.72 1.371 214.58 

pure stearic 

acid 
- 72.00 1.44 

0.342 
180.54 

EG/SA 5 5 71.43 1.36 0.409 170.46 

EG/SA 10 10 71.33 1.39 0.518 173.28 

EG/SA 20 20 70.63 1.27 1.577 157.83 

pure paraffin - 58.41 2.36 0.177 130.27 

EG/Pa 5 5 58.74 2.24 0.188 122.73 

EG/Pa 10 10 59.14 2.12 0.254 117.15 

EG/Pa 20 20 58.11 2.09 0.313 116.09 

 

60 80 100 120 140
-40

-30

-20

-10

0
(a)

 

 

 pure erythritol

 EG/Er 5 

 EG/Er 10

 EG/Er 20

H
ea

t 
fl

o
w

 [
m

W
]

Temperature [
o
C]

 

40 50 60 70 80 90 100

-30

-20

-10

0 (b)

 pure stearic acid

 EG/SA 5

 EG/SA 10

 EG/SA 20

H
ea

t 
fl

o
w

 [
m

W
]

Temperature [
o
C]  

http://www.ijesrt.com/


 
[Choi* et al., 5(9): September, 2016]  ISSN: 2277-9655 

IC™ Value: 3.00                                                                                                         Impact Factor: 4.116 

http: // www.ijesrt.com                 © International Journal of Engineering Sciences & Research Technology 

 [802] 

36 45 54 63 72

-20

-15

-10

-5

0 (c)

 pure paraffin

 EG/Pa 5

 EG/Pa 10

 EG/Pa 20

Temperature [
o
C]

H
ea

t 
fl

o
w

 [
m

W
]

 

 

Fig.6 DSC curves of PCM composites as a function of EG content. 
 

Thermal conductivity was measured by thermal equilibrium method according to the ASTM D 5470. It could be 

obtained from the temperature difference in response to an applied heating power, when the sample reached heat 

equilibrium with the copper rods in parallel to the sample to be measured by comparison with a reference material. 

The thermal conductivity was estimated by Fourier’s law [32]: 

 

Q= 
λA

𝑑𝐴  
∆𝑇                                                  (1) 

 

where, Q is the heat capacity, λ the thermal conductivity, A the direction normal to a unit surface area of copper rod, 

dA the distance between upper and lower copper rods, and ∆T the temperature difference between sample surface 

and copper rods.  

 

The change in thermal conductivity of the PCM composites with respect to the mass fraction of the EG was shown 

in Fig. 7 and Table 2. It could be seen that the thermal conductivity of the PCM composites clearly improved 

compared to that of pure PCM. Thermal conductivities of all PCM composites were linearly increased with 

increasing the EG content. Thermal conductivity of all pure PCM showed a significant increase by about 80–400% 

due to the addition of 20 wt% EG. However, although thermal conductivity of the PCM composites was increased, 

the latent heat of the PCM composites was somewhat decreased with EG content. It was reported that fillers could 

decrease the latent heat of the PCM composites because the dispersed fillers could interrupt the local boning 

environment of molecules and hinder the crystallization and melting of the PCM [33-35].   
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Fig.7 Thermal conductivity of PCM composites as a function of EG content 
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Thermal diffusivity was used to evaluate the response speed of the PCM composites in the environmental 

temperature change which was related to the heat transfer efficiency. The thermal diffusivity of the PCM composites 

were improved with increasing the EG content indicating the enhanced heat transfer efficiency [38,39], as shown in 

Fig. 8. Therefore, the PCM composites were recommended as promising composite materials because the thermal 

diffusivity of EG/Er 20, EG/SA 20, and EG/Pa 20 was 113.8%, 360.7%, and 76.3% higher than that of pure PCM, 

respectively. 

We could conclude that the main advantage of the PCM composites with EG was the significant increase in thermal 

conductivity without much reduction in their latent heat energy storage capacity and without leakage of pure PCM 

even when it was heated over the melting temperature of pure PCM. 
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Fig.8 Thermal diffusivity of PCM composites as a function of EG content. 

 

Thermal cycling of PCM composites 

Fig. 9 showed latent heat changes of the PCM composites in the heating and cooling cycling tests. The latent heat 

values decreased drastically up to the 3rd cycle which was likely due to the leakage of the molten Er, SA, and Pa 

that was not embedded within the worm-like EG or in contact with it. In the subsequent cycles, the values remained 

almost constant indicating that was very little further leakage from the composites. Thermal cycling results showed 

that the shape stabilization of Er, SA, and Pa was achieved by adding only 20 wt% of EG and there was no leakage 

of PCM after exposure to 5 cycles.  

Based on the results we could conclude that the form stable PCM composites had good thermal reliability with 

regarding to the changes in its phase change temperatures and latent heats. Their excellent cycling performance was 

of great importance in their prospective thermal energy storage applications. 
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Fig.9 Thermal cycling tests of PCM composites as a function of EG content 
 

Thermal stability of PCM composites 

The weight loss of the PCM composites was shown in Fig. 10. As the EG loading increased, the thermal stability of 

EG/Er composites did not show significantly differ until 10 wt%, while at 20 wt% it slightly increased. Thermal 

decomposition of EG/Er composites gradually shifted to a higher temperature with increasing the EG content [40]. 

Although the interaction between graphite platelets and erythritol was weak, EG particles still interacted with 

surrounding matrix and improved the overall stability of the PCM composites.  

The pure stearic acid started to be removed at about 170◦C and the final weight loss percentage was nearly 100% at 

305◦C. The TGA curves of EG/SA composites had similar weight loss behaviors. Most of the weight loss at 

temperatures of 170–305◦C was attributed to the removal of stearic acid in EG/SA composites which proceeded over 

a wider temperature range than that of pure stearic acid, probably because the EG layers could improve the thermal 

stability of stearic acid by creating a physical protective barrier on the surface of PCM composites. Similarly, in Fig. 

10(c), thermal decomposition of EG/Pa composites gradually shifted to a higher temperature with increasing the EG 

content. It was significant that the weight loss of the PCM composites strongly depended on the loading ratios of 

PCM in the composites. Therefore, the PCM composites had a good thermal stability and could be used in thermal 

energy storage system.  
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Fig.10 TGA curves of PCM composites as a function of EG content. 

 

 

CONCLUSION 
In this study, the thermal conductivity of the PCM composites was found to increase with loading of EG while the 

relative enhancement strongly depended on the high surface area and good dispersion. Among the three types of the 

PCM composites, EG/Er 20 showed the greatest increase of thermal conductivity and thermal diffusivity by 84.02% 

and 113.79%, which indicated their superior thermal cycling stability and response speed of the PCM composites. In 

contrast, the slightly decrease in energy storage capacity of the PCM composites from 251.08 to 214.58 J/g was 

owing to the presence of EG resulting from the decrement of super cooling effect. 

In summary, the EG used as fillers was one of highly promising materials for preparing the PCM composites with 

greatly enhanced thermal conductivity and slightly decreased energy storage capacity which had great potential in 

thermal energy storage applications. 
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